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A modification of the classical comparison theorem for the free vibration frequencies of homogeneous linearly elastic bodies of 
an arbitrary anisotropy, which occupy a region of arbitrary shape with clamped boundary, is proved by means of Van Hove’s 
theorem. Some other similar modifications of the comparison theorem for homogeneous linearly elastic bodies of special typea 
of anisotropy (characterized by the presence of specular symmetry), having the shape of a rectangular parallelepiped with faces 
parallel to the planes of symmetry, and with sliding boundary conditions either along the faces or along their normals, are proved 
using modifications of Van Hove’s theorem. On the basis of the set of proved modifications of the comparison theorem, a method 
for obtaining refined bilateral bounds for all frequencies of the free vibration spectrum pertinent to the specified problems (for 
which the exact values of frequencies are, as a rule, unknown) is proposed. The bounds turn out to depend in a simple manner 
on the least and the greatest velocities of propagation of elastic waves in a solid and on the characteristic geometrical dimensions 
of the body. Examples are considered. A version of the comparison theorem modifications and a method of obtaining the bounds 
for frequencies, suitable for the linearixed problem of small free vibrations of homogeneous uniformly strained non-linearly elastic 
bodies, and also for free vibrations of moderately inhomogeneous linearly elastic ones, is proposed. 63 1997 Elsevier Science 
Ltd. AU rights reserved. 

The theory of free vibrations of linearly elastic bodies reduces, in mathematical respects, to the eigenvalue 
theory for a certain type of linear self-adjoint operators in Hilbert space (see for example [l-3]); the 
general properties of both the spectrum and the system of eigenvectors of such operators have been 
studied extensively. Nevertheless, the number of problems on free vibrations where exact solutions 
and correspondingly exact values of the characteristic frequencies are known is extremely small; all of 
them concern the case of a Hookean material and bodies of simple shape: a sphere, a rectangular 
parallelepiped, etc. In other problems, where the exact values of the frequencies are unknown, they 
can be replaced by rigorous bilateral bounds, the lower bound for the lowest frequency being of particular 
interest. 

In the general theory [2, 31 the classical comparison theorem on the characteristic frequencies of 
different bodies is proved, which enables one, in principle, to obtain bilateral bounds for frequencies 
when Hookean bodies, which occupy regions of simple shape (since their frequencies are known), are 
used for comparison. 

In the present paper, for a particular class of linear free vibration problems we prove some 
modifications of the comparison theorem with a less restrictive inequality imposed on the elasticity 
tensors of the bodies whose frequencies are compared with one another. The particular class of problems 
is specified by the conditions of Van Hove’s theorem [4] and its modifications [5-71, the use of which 
leads to a less restrictive inequality. 

Modifications of the comparison theorem enable one to obtain refined (as compared to the classical 
theorem) bounds for the frequencies, which are moreover simple and physically clear. In certain 
cases the refinement is significant. In the paper we consider the example of a body with an extremely 
simple orthotropic elastic relation, occupying a region that is flattened considerably in a certain 
direction. The lower bound for the lowest characteristic frequency of such a body, resulting from the 
classical theorem, is found to be many times less than the exact value, whereas the analogous bound 
resulting from the modification of the theorem, is almost identical with it. This example, together with 
the others, demonstrates the efficiency of the method for constructing bounds resulting from the 
proposed theory. 
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1. A BRIEF SUMMARY OF WELL-KNOWN RESULTS 
ON THE FREE VIBRATIONS OF LINEARLY ELASTIC 

BODIES WHICH ARE USED BELOW 

We use Gibbs’ system of tensor notation, supplemented with the tensor-product sign and with a right 
upper multi-index to denote isomers of a tensor. In the formulae directly related to free vibrations, the 
notation employed is close to that used in [3], which serves as a basis for the present statement of the 
main available results. 

In stating the formulae of the theory of free vibrations of linearly elastic bodies we will confine 
ourselves to the special cases considered in the paper: the elastic body is homogeneous, there are no 
body forces, the boundary conditions are either those of zero displacements on the whole of the boundary 
(a “clamped” boundary), or it is assumed that there are plane portions of the boundary and the conditions 
of free sliding, either along the planes themselves, or along their normals, are specified on them, while 
the remainder of the boundary is clamped; there are no free portions of the boundary. 

Let us suppose that the body in the equilibrium configuration, taken as a reference configuration 
[8], occupies the region B of three-dimensional Euclidean space. The material points of the body are 
identified by means of their position vectors x in this configuration. 

We denote by u(x, t) the displacement field at time t, by V @ u(x, t) the displacement gradient field 
(do = dx . V 8 u) and, by T(x, t) the stress tensor field (generally speaking, it is the Piola stress tensor 
[8], which, within the framework of the linear theory, is identical with the Cauchy tensor). The linear 
elastic governing relation is specified in the form 

T(x, r) = C:VBu(x, t) (1.1) 

where C is the elasticity tensor (of the fourth rank). Since the body is assumed to be homogeneous, 
the tensor C has the same value at all its points. 

Let us introduce a notation for the fourth-order tensor isomers. Let (i&i&,) be a permutation of the 
set (1234). Then for reducible tensors (tetrads) 

a, Q a2 @ a3 Q ayhi4) = ai, QD ai2 Q ab @ ai4 0.2) 

and for arbitrary tensors C@lii44) denotes that each tetrad in a representation of the tensor C is replaced 
by its corresponding isomer according to (1.2); in other words, if (jrj$j4) is the inverse permutation 
for (i&i&), then for any four vectors ul, . . . , u4 

u, @u2&li2@+u3 @u, zC(~~~~+ u, @u, @u3 @‘u4 = 

=ci uj, QUj2 @Uj3 @Uj4 =uj, @uUh:C:Uh @‘jr (1.3) 

Due to the presence of an elastic potential, both in the classical linear theory and in linearized non- 
linear one, the elasticity tensor is invariant under “pair-wise permutation” 

COW = C (1.4) 

In the classical linear theory there is one more symmetry 

cU”3 = CVW = c 

that does not occur in the linearized non-linear theory. In what follows, this symmetry is never employed, 
and hence, the range of applicability of the results is not restricted to the cases where it occurs. 

Let us write the equation of motion of an elastic body for the interior of occupied region B, denoting, 
as is usually done, the material derivative with respect to time by a dot above a symbol 

pii(x,t) =V .T(x,t) =V CV @u(x,t) (1.5) 

where p = const is the density of the body in the reference configuration and V . T is the stress tensor 
field divergence with respect to this configuration (V 1 T = I: V 8 T, where I is the unit second-rank tensor). 

Let Zc be the clamped portion of the boundary aB, X’ the set of plane portions with sliding along the 
plane Z” the set of plane portions with sliding along the normal n the outward normal to the boundary. 
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The boundary conditions then take the form 

u(x, t) = 0, x E P 

u(x,~ . n = 0, n . T(x, t) . (I - n @ n> = 0, x E xf (l-6) 

U(X, r) . (I- n 8 n) = 0, n . T(x, t) . n = 0, x E Cn 

We will use the term free vibrations for the displacement fields that vary sinusoidally with time and 
obey the equation of motion and the boundary conditions 

u(x, t) = u(x)sin(ot + y) 
v . c:v Q u(x) + po%l(x) = 0 
u(x) = 0, x E co (l-7) 
u(x) . n = 0, (n . C:V 8 u(x)) . (I - n 8 n) = 0, x E Z’ 

u(x) . (I - n 63 n) = 0, n . (C:V 63 u(x)). n = 0, x E P 

where o is the frequency, y is the phase, and u(x) is the characteristic mode of vibration; it is convenient 
also to introduce the associated characteristic value 

h = pd, CO== (l-8) 

Integrating the second equation of (1.7) over the region B and taking the boundary conditions into 
account, we obtain 

h = (V 8 u:c:v 8 u)/(u * u) (1.9) 
(here and henceforth angle brackets denote integration over the region B). 

If the elasticity tensor C is such that the numerator in (1.9) is positive definite, then all of the charac- 
teristic values are positive. Moreover, we know that they form a denumerable set hi, b, . . , , and also 

o< h, s h, s . . . s h, s . . . . lim X, = += (1.10) 
n-b- 

In addition to (1.9) and (l.lO), the characteristic values and associated modes possess a number of well- 
known properties, of which we will henceforth need only the so-called minimax property. In order to 
specify this, we introduce some ideas and notation. 

Let X be the set of all continuous piecewise-smooth vector fields obeying the kinematic boundary 
conditions, let ‘?Vn be the system of n piecewise-continuous vector fields wi(x) (i = 1, . . . , n), and let 
?Vk be the orthogonal complement, in the sense of the scalar product (u . v), of the linear hull of the 
system ?V,, in the space of piecewise-continuous vector fields on B. Then 

h 
(V 8u:c:V @u) 

It+1 = sup irf 
W,) W,nX (u.4 

(1.11) 

where {‘JVJ is the set of all w*. 
From (1.11) it follows that, provided the tensors C’ and C are such that for the same region with the 

same boundary conditions, the inequality 

(V @u:C’:V 8u) c (V @u:C:V Cal) (1.12) 

holds for all admissible fields (u(x) E X), then for the characteristic values with the same numbers the 
following inequality holds 

h;, s h”, II = 1, 2, . . . (1.13) 

If the regions and/or the boundary conditions are different, but such that X’ > X or the fields which 
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belong to 96, being continued by zero to the region B’ > B, appear to belong to SC’, and additionally 
for all u(x) E X inequality (1.12) holds, then for the characteristic values with the same numbers 
inequality (1.13) also holds. 

The assertions stated above, expressed finally in terms of inequalities (1.13), form the basis for a proof 
of the classical comparison theorem for the characteristic values [3]. Modifications of the comparison 
theorem for homogeneous bodies under the appropriate boundary conditions (i.e. under the 
circumstances when Van Hove’s theorem or some of its modifications is valid) wilI be deduced from 
the same assertions. 

2. VAN HOVE’S THEOREM AND ITS MODIFICATIONS 

We give, first, some definitions and then state Van Hove’s theorem and three of its modifications. 
The original Van Hove’s proof [4] is reproduced in [3]. The proofs of modifications can be found in 
P-71. 

Definition. The quantities 

C= min 
- lg,l=lg~i=I g, @gz:c:fh @tit2 

z= max 
Ig,l=Ig2I=l 

g, @Jgs:c:g, @g2 

(2.1) 

(2.2) 

are called, respectively, the lower and the upper Hadamard numbers of the fourth-rank tensor C. 
Clearly, the validity of the Hadamard inequality (see [3, 81) for a fourth-rank tensor is equivalent 

to non-negativeness of the lower Hadamard number, and the validity of the strong-elliptic&y inequali 
is equivalent to its positiveness. In terms of eigenvalues of the acoustic tensor A(n) = n @ n:C(i3 2 ) 
[3] for all values of the wave normal n, the lower Hadamard number is the minimum of the least 
eigenvalue with respect to n, and the upper Hadamard number is the maximum of the greatest eigen- 
value. In other words, 

where _a and a are, respectively, the least and the greatest propagation velocities for elastic waves of all 
possible polarizations, corresponding to various directions of propagation in a solid of the density p 
with the elasticity tensor C. 

I&z Hove’s theorem. Let B be a bounded regular region in R3, let C be a constant fourth-rank tensor, 
and let u(x) be a continuous piecewise-smooth vector field, which vanishes aB. Then the following 
inequalities hold 

c(V @WV @u)~ (V @u:c:V ml)~ P(V 8u:V @u) (2.4) 

This formulation, which is somewhat different from the original [4], is obviously equivalent to it. 
Before stating the modifications of Van Hove’s theorem, we define the fourth-rank tensors invariant 

with respect to one or several specular reflections. For simplicity we will denote the representations of 
specular reflections in the space of fourth-rank tensors by the same symbols as the reflections themselves 
(which act in the vector space). We will denote the image of the tensor C under the reflection Q by 
C*Q, where for decomposable tensors (tetrads) this denotes the following 

c,@~~@c~63c,*Q=c,~Q@c~-Q’Bc~~Q@c,,~Q 

which for an arbitrary tensor each tetrad is converted by (2.5) into its representation. 
The second-rank tensor 

(2.5) 

Qi = I - 2ei QD ei (2.6) 

specifies reflection with respect to the plane with normal ei. 



Bounds for the free vibration frequencies of homogeneous anisotropic bodies 663 

We call the fourth-rank tensor C specularly symmetric with respect to the plane with normal q, if 

C*Qi = C (2-V 

We call the fourth-rank tensor C orthotropic, if a triplet of mutually orthogonal planes exists, with respect 
to which it is specularly symmetric 

C*Qi=C, i= 1.2.3, ei.ei=&j (2.8) 

These planes are referred to as planes of orthotropy in this case. 

Modified Hz’an Hove’s theorem 1. Let B be a rectangular parallelepiped with faces having unit normals 
fel, fez, fe3 (the first, second and third pairs of faces), let C be a constant fourth-rank tensor and let 
u(x) be a continuous piecewise-smooth vector field. 

Then 
1. if the tensor C is specularly symmetric with respect to the plane of some pair of faces (say, the first 

one) and if n(x) satisfies the tangential@ condition (o . el = 0) on the faces of this pair and vanishes 
on the others, then inequality (2.4) holds; 

2. if the tensor C is orthotropic with orthotropy planes parallel to the planes of the faces and if u(x) 
satisfies the tangential@ condition on all faces (n . ei = 0 on the faces of the ith pair), then inequality 
(2.4) also holds. 

Modified Van Hove’s theorem 2. This repeats both assertions of the modified Van Hove’s theorem 1 
apart from the tangentiality condition for the field u(x) that is replaced by the condition of its normality 
on the faces of one pair or on all the faces, respectively. 

Modijied Van Hove’s theorem 3. This embraces various mixed cases, when conditions of different types 
(tangentiality or normality) are specified on different pairs of faces or on different faces of the same 
pair. 

3. MODIFICATIONS OF THE COMPARISON THEOREM AND 
BILATERAL BOUNDS FOR THE CHARACTERISTIC VALUES 

Note, that if the region B, the boundary conditions and strongly elliptic fourth-rank tensors C’ and 
C obey the hypothesis of some theorem of Van Hove’s type, and for biquadratic forms of the tensors 
C’ and C the inequality 

f63Jg:C’:f@g~f@g:C:f@g, Vf,g 

holds, then for non-zero admissible vector fields u(x) we have 

0 < (VBu: C’: Vml) d (V@u: c: V8u) 

(3.1) 

(3.2) 

which is identical with inequality (1.12) (it follows from inequality (2.4) for the difference of the tensors 
C and C’). 

Let us return to the free vibration problem for homogeneous elastic bodies. From the positive 
definiteness of the quadratic functionals in (3.2) it follows that free vibrations do exist, and from (1.12) 
we obtain inequalities (1.13) for positive characteristic values, when two bodies with the elasticity tensors 
C and C’, respectively, occupy the same region having the shape of a rectangular parallelepiped, with 
the same boundary conditions corresponding to some theorem of Van Hove’s type. 

Suppose that the regions occupied by the bodies have a different shape, and moreover are possibly 
different, or portions of the boundary where conditions of different types are specified (zero displace- 
ments, tangential@ or normality with respect to the boundary surface) are different. Suppose additionally 
that each of the fields can be continued by zero up to the field on a rectangular parallelepiped, that 
obeys the hypothesis of some theorem of Van Hove’s type, and moreover, all the fields, admissible for 
the body with elasticity tensor C, are simultaneously admissible for the body with the elasticity tensor 
C’. Then the validity of inequalities (3.1), implies the validity of inequalities (1.13) for characteristic 
values (see Section 1). 
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The assertions stated above represent the totality of modifications of the classical comparison theorem 
for free vibrations. In particular, if the boundary is clamped, then apart from the validity of inequality 
(3.1), it is only necessary that the region B be a subregion of B’ (it is sufficient to employ the original 
Van Hove’s theorem here). 

The difference between the established modifications of the comparison theorem and the classical 
one is that the classical theorem requires an inequality of the type of (3.1) to hold not only for the dyads 
f 69 g, but also for arbitrary second-rank tensors, which is a much stronger condition than (3.1). 

We will illustrate this difference by the example of bodies which obey Hooke’s law with shear and bulk moduli 
G’, EC and G, K, respectively. The classical comparison theorem requires that the inequalities 

O<G’sG, OcK’cK 

hold simultaneously, whereas inequality (3.1) is equivaient to the system of inequalities 

O<G'SG, o-fir+ ~G*sK+ $G 

Thus, K’ can be significantly greater than K provided that G’ is significantly smaller than G; for a sufficiently large 
difference between the shear moduli, the quantity K may even be negative, and still for such a body (provided that 
it obeys the hypothesis of some theorem of Van Hove’s type) the characteristic values, and hence, frequencies with 
the same numbers, will satisfy inequality (1.13). 

We will consider the problem of obtaining bilateral bounds for characteristic values, and hence, for cor- 
responding frequencies. We will concentrate first, on the case when the boundary of a homogeneous body 
that occupies the region B, is clamped. Along with a given body having strongly elliptic elasticity tensor C 
we introduce two fictitious “comparison bodies” with clam 

R 
ed 

Bt2) (B(l) > B > Bc2)) and having the “elasticity tensors” C 
boundary, occupying the regions B(l) and 

) = cl and Ct2) = ~1, respectively, where _c < 
0 and C < 0 are the lower and the upper Hadamard numbers of the tensor C and, 1 = 169 1(1324) is the 
unit fourth rank tensor (the identity operator in the space of second-rank tensors). Clearly, the inequalities 

f @ g:w: f @ g s f 8 g: c: f Qg s f 8 g: C(2): f @ g, Vf, g 

then hold. Hence, for the corresponding characteristic members the following inequalities hold 

0 < 2;) s h, s if’, 11=1,2,... (3.3) 

i.e. the numbers X,? and G2)yield a bilateral bound for &. It remains only to find their explicit values. 
Note, that the free vibration equations (1.7) for the comparison bodies, are the characteristic equations 
for the Laplace operator with Dirichlet boundary conditions. It is obvious that each of them is equivalent 
to a system of three scalar Helmholtz equations with the same boundary conditions. In other words, 
every characteristic function associated with the Laplace operator (a solution of the Hehnholtz equation) 
generates a three-dimensional subspace of characteristic vector-valued functions with the same charac- 
teristic value; h(i) is obtained from the characteristic value by multiplying by c, and ht2) by multiplying 

(l) by ?. Thus, the numbers h and Xc2) are triply degenerate (provided that the characteristic values of 
the scalar Laplace operator are non-degenerate). 

If the region B is sufficiently simple and the characteristic values Mi, i = 1, 2, . . . , of the Laplace 
operator are known for it, then it is possible to set B(l) = Bt2) = B and we obtain 

If the values 
r Zlck), 12@), Z3@ 

for the region B are unknown, some standard regions, say, parallelepipeds with dimensions 

B(l) > B > B( I, 
k = 1, 2), may be used as B (l) and B(*), in addition it is necessary to satisfy the relation 
. It then becomes possible to make use of the well-known solution for a parallelepiped 

with the Dirichlet condition 

p{k) =x 
(n$k’)2 (n:k’)2 

-+-+- (k) 
(f,“‘)2 (f$‘Q2 gk’)* It’ 

, np’, .ik’ =1,2 ,..., k=l,2 
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where I.$‘) for each value of k are assumed to be numbered in i in the form of a non-decreasing 
sequence. 

To obtain somewhat physically clear bounds for the first frequency (the lowest in the spectrum), 
we may take #) for a parallelepiped B(i) that contains B, and $1, say, for a sphere Bt2) that lies in- 
side B 

where r(*) is the diameter of sphere B(*), and then optimize them in a reasonable way. The best upper 
bound of such a type corresponds to an inscribed sphere of the 
we denote by Z.t2). As for a parallelepiped, we do the following: let I,, 

eatest possible diameter, which 
R be the least thickness of a layer 

that contains B, 22) the least thickness of a layer that contains B and whose plane is orthogonal to 
the plane of the first layer, Zs, (‘) the least thickness of a layer that contains B and whose plane is orthogonal 
to the planes of two preceding ones. Then 

These bounds are simply related to the times of propagation of both the fastest and the slowest waves 
for distances which are characteristic geometrical parameters of the region B. 

Note that bilateral bounds are found for a homogeneous body of arbitrary anisotropy, when an 
analytical solution is unknown even for standard regions (spheres or parallelepipeds); however, the lower 
and the upper Hadamard numbers can be found either analytically or at least numerically, and this 
problem of finding an extremum for a function is, in principle, quite simple. 

If we consider the case when the region B is a parallelepiped with, say, conditions of, sliding all over 
the boundary, and the elasticity tensor C is orthotropic with the orthotropy planes parallel to the 
planes of the faces. Then, taking account of the isotropy of the tensors cl, El and making use of the 
modified Van Hove’s theorem 1, we arrive at inequalities (3.3), where @ and G*) are the characteristic 
values of the following boundary-value problems 

~(‘)Au(~)(x)+h(‘)~(‘)(x)= 0, 
dk) .nl, =0 
n.V8u"'.(I-n~n)lae=0, k=1,2, 

p = c 
-* 

p = z 

and are numbered in non-decreasing order. The solutions of such problems are well-known: introducing 
axes parallel to the edges of the parallelepiped, we split each of the above two problems into three 
problems for the components. For instance, for z+@)(x) we have 

CL\+) + h(l)@ = 0 

Hence 

pi=~*($+$+$), n,,n2,n3 =0,1,2 ,...; n,2+n,2+.n,2 31 

where b are numbered in non-decreasing order, taking into account the degeneration multiplicity; it 
is the values of k corresponding to the cases when only one of the numbers nk is non-zero (or two of 
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the numbers or all three numbers), that are considered as single (double and triple, respectively). Here, 
the relation @) = c@)k holds. 

If Ii G Z2 G Zs, then 

where the bounds for w1 are again simply related to the times of propagation of both the fastest and 
the slowest waves over a distance equal to the length of the longest edge of the parallelepiped. 

Consider a number example. Let 1s = 51z 2 Sl,, E = 3/2c. Then 

pk =Ir2k2/1;, k=l,...S 

and moreover, there is no degeneration for k = 1, . . . , 4, it begins only with k = 5 (us = ~16). For the intervals 
containing the first four values of &, measured in units of x2& we have 

i.e. the intervals do not overlap with each other and with the interval for hs and b; they yield completely effective 
bilateral bounds. Note, that the bounds hold for an arbitrary orthotropic body (appropriately oriented), i.e. in the 
case when in general it seems impossible to find an analytical solution. 

4. SOME MODIFICATIONS OF THE PROPOSED METHOD IN THE 
CASE OF UNIFORMLY STRESSED NON-LINEARLY ELASTIC BODIES 

AND MODERATELY INHOMOGENEOUS BODIES 

The linear equation of motion (1.5) can be obtained by linearizing the non-linear equation with respect 
to the displacement gradient in the case when the latter is small. We will assume that an initially strained 
non-linearly elastic body is in equilibrium under certain boundary conditions. We will consider the 
vibrations corresponding to the small-gradient displacements with respect to the equilibrium 
configuration x (taken as a reference one). In the equilibrium configuration, the initial Cauchy stress 
field To(x) satisfies the equilibrium equation both inside the body and on its boundary over portions 
of tangential or normal sliding. Note that in the reference configuration the Cauchy stress T and the 
Piola stress T, coincide with each other, but in configurations different from the reference one there 
is no longer such coincidence [8]. We specify the linearized incremental defining relation for the Piola 
stress tensor by the equality 

T,(x,t)-T,,(x)= C(x):V @u(x,t) 

where n(x, t) is the above-mentioned small-gradient displacement field with respect to the reference 
configuration. Then, the equation of motion takes the form (1.5), where by p we mean the reference- 
configuration density. Provided that the homogeneous non-linearly elastic body is uniformly strained 
in the reference configuration, the tensor C(x) = const, and all the results of Section 3 remain valid. 

Note that the elasticity tensor C possesses property (1.4); in addition, it is related specifically to some 
different elasticity tensor L that specifies the linearized relation between the Jaumann increment of 
the Cauchy stress tensor and the small-strain tensor (the symmetrized gradient of the displacement field) 
[8]. Since the tensor L is a conventional characteristic of incremental elasticity, let us compare the lower 
and the upper Hadamard numbers c and C with the corresponding quantities I- and t. 

First, from the relation between C and L 

we find, that for the unit vectors f and g 

f@g:C:f@g=f@g:L:f@g++T;:(f@f-gag) 
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where Ts = TO - l/31@ To) is the Cauchy stress deviator. Then, using the Cauchy-Bunyakovskii inequality 
for the tensors TO and (f @ f - g 63 g), we get 

f@g:L:1@g-~,cfOg:C:f@g~f@g:L:f@g+~() 

where g = (TUT&) vz is the shear stress intensity. Hence we obtain the inequalities 

~-‘~~~~q++~, i-zoed+zo (4.1) 

which give effective estimates c and E when the shear stresses are not large compared with the elastic 
moduli. If we substitute! - 20 for 5 and I + ~0 for E in the bilateral bounds for the characteristic values, 
we again arrive at rigorous bilateral bounds, albeit slightly rougher. 

We will now consider the case when the elasticity tensor field C(x) is not uniform, but (in the sense 
clarified below) does not differ greatly from some uniform field Co. We will show how to reduce this 
case to the uniform case. 

Introducing a certain quantity 

a0 = y$(C(x) - Co) i (C(x) - Co >rY 

which characterize the deviation of C(x) from Cc, for an arbitrary second-rank tensor H we obtain 

(by virtue of the Cauchy-Bunyakovskii inequality for the tensors C - CO and H 8 H). 
Further using the classical comparison theorem, we find that the characteristic values for the body 

with the elasticity tensor C are contained in the interval between characteristic values with the same 
numbers for fictitious homogeneous bodies with elasticity tensors C, = C, - ~1 and Cz = CO + ~61, 
respectively. Note, that 

-+ &=~~-a,; co =Zo+ao 

and for each of the comparison bodies we may use the results of Section 3, provided that 

(4.2) 

Inequality (4.2) gives a rigorous meaning to the supposition of moderate non-uniformity of the field 
C(x). Unlike any version of perturbation theory, it is not necessary here that the value of aa should be 
extremely small. 

5. AN EXAMPLE OF A COMPARISON OF BOUNDS OF THE SAME 
TYPE BASED ON THE CLASSICAL COMPARISON THEOREM 

AND ON ITS MODIFICATIONS 

Let the elasticity tensor C be constant, and let the region B occupied by the body be a rectangular parallelepiped 
0 4 X . ei d li (i = 1, 2, 3), Ii < l* d is, on the boundary of which the body is clamped. Then, by virtue of the first 
modification of the classical theorem (Section 3) for the first characteristic value the following inequality holds 

On the other hand, by (1.11) for n = 0 

A, =inf(VQh:C:V@4u) 

91 (u-4 

(5.1) 

It follows from (5.2) that the ratio on the right-hand side of the equality, for any kinematically admissible field, 
a(x) is an upper bound for the characteristic value hi. In particular, we can take as such a field 
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u(x)=gsin3sin-an-, Xi =X.ei, I&=1 -2 . xx3 

4 12 13 

Then 

k cIc2 el@g:C:el@g+ 
I‘ 

( 1: 

e2 8g:C:e2 @g + e3 @g:C:e3 Og 

122 13’ 1 

(5.3) 

(5.4) 

Let the orientation of the parallelepiped with respect to characteristic directions in an anisotropic solid, be such 
that the vector el is collinear with the normal to the front of the slowest elastic wave. l&king into account that g 
in (5.3) and (5.4) is an arbitrary unit vector, we choose it to coincide with the polarization vector of that wave. 
Then el GO g is the dyad on which the biquadratic form (2.1) attains its minimum value 

c=el Bg:C:el Og 

By virtue of (5.5) inequalities (5.1) and (5.4) take the form 

(5.5) 

(5.6) 

If the parallelepiped is considerably flattened in the direction el (1, 6 12 and 1r 4 1s), then the upper and lower 
bounds in (5.6) almost merge and differ as little as desired from the quantity x”c/l~. In other words, for the chosen 
orientation of the parallelepiped, the lower bound for the lowest characteristic frequency, based on a modified 
comparison theorem, approaches its exact value in the limit of small thicknesses. 

Note, that the bound (5.1), obtained by means of the comparison body with elastici2eJensor ~1, can be cor$dered 
as found using a certain Hookean comparison body with the elasticity tensor ~(21 - I @ I), where 1 is the 
orthogonal projector on the subspace of symmetric second-rank tensors 

l”f +,&M +1,g,1W42)) 

ldcf:H=Hs =$H+HT), H:ldef:H=HS:HJ 

Indeed, for any dyad H we have 

and, hence, by any of the Van Hove theorems 

This means that under appropriate conditions (say, clamping over the whole boundary) the characteristic frequencies 
and modes both for the body with elasticity tensor cl and for the body with elasticity tensor ~(21~~ - I @O I) are 
the same; despite the fact that the second body possesses a negative bulk modulus, contrary to conventional opinion, 
it is stable under conditions of clamping, and it can execute free vibrations. 

We will now show that in the same problem with some special orthotropic tensor C the best lower bound for 
the lowest frequency, found on the basis of the classical theorem by means of the Hookean comparison bodies 
(i.e. a bound of the same type), can be as small as desired with respect to the exact value. 

Suppose the elasticity tensors of the orthotropic body C and the Hookean comparison body C’ are specified by 
the equalities [9] 

C = 2G((ldcf -s@s)+h58s), s:I=O, S=ST, S:S=l, hcl (5.7) 

C’ = 2G’ ldef 

By the condition of the classical comparison theorem 

H:C’:H s H:C:H, VH 

whence we obtain the following inequality for the moduli of the Hookean body 
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Instead of finding the exact value of the quantity Xl for the Hookean body (that has the same shape and is under 
the same boundary conditions of clamping as the orthotropic body), we make use of the upper bound (5.4), having 
replaced the elasticity tensor C by C’ and the vector g and r+ Then the upper hound for Y, takes the form 

which in the limit of small thicknesses reduces to 

We will present without calculations (which are rather complicated) the value of lower Hadamard number for the 
tensor C (5.7) 

c=2Gs;+h(l-& 
2-s; +h.s; 

(5.10) 

where s2 is the second of the eigenvalues of the tensor S, numbered in non-decreasing order. 
If s2 # 0, i.e. the tensor S differs from a pure-shear deviator, when h < s: equality (5.10) yields 

Hence, in the limit of both small thicknesses and small values of h, the lower bound (5.9) based on the classical 
theorem, can be as small as desired compared with the exact value, specified by the system of inequalities (5.6), 
which in the limit considered converts into an equality. 

Note, that the above comparison of the bounds holds not only for a parallelepiped, but also for a properly oriented 
thin disk of arbitriuy shape in a plane, for a thin ellipsoid and for a number of other thin clamped bodies. 

I wish to thank I? A. Zhilin for useful discussions, that gave rise to the principal idea of this investiga- 
tion. This research was supported financially by the Russian Foundation for Basic Research (96-05 
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